The entropic barrier: a simple and optimal universal self-concordant barrier

نویسندگان

  • Sébastien Bubeck
  • Ronen Eldan
چکیده

We prove that the Fenchel dual of the log-Laplace transform of the uniform measure on a convex body in Rn is a (1 + o(1))n-self-concordant barrier. This gives the first construction of a universal barrier for convex bodies with optimal self-concordance parameter. The proof is based on basic geometry of log-concave distributions, and elementary duality in exponential families.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Self-concordance of Barrier Functions Based on Kernel-functions

 Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...

متن کامل

Recursive Construction of Optimal Self-Concordant Barriers for Homogeneous Cones

In this paper, we give a recursive formula for optimal dual barrier functions on homogeneous cones. This is done in a way similar to the primal construction of Güler and Tunçel [1] by means of the dual Siegel cone construction of Rothaus [2]. We use invariance of the primal barrier function with respect to a transitive subgroup of automorphisms and the properties of the duality mapping, which i...

متن کامل

Primal-dual path-following algorithms for circular programming

Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...

متن کامل

A New Class of Self-Concordant Barriers from Separable Spectral Functions

Given a separable strongly self-concordant function f : Rn → R, we show the associated spectral function F(X) = ( f ◦ λ )(X) is also strongly self-concordant function. In addition, there is a universal constant O such that, if f (x) is separable self-concordant barrier then O2F(X) is a self-concordant barrier. We estimate that for the universal constant we have O ≤ 22. This generalizes the rela...

متن کامل

On the optimal parameter of a self-concordant barrier over a symmetric cone

The properties of the barrier F (x) = −log(det(x)), defined over the cone of squares of a Euclidean Jordan algebra, are analyzed using pure algebraic techniques. Furthermore, relating the Carathéodory number of a symmetric cone with the rank of an underlying Euclidean Jordan algebra, conclusions about the optimal parameter of F are suitably obtained. Namely, in a more direct and suitable way th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015